Online submodular minimization
نویسندگان
چکیده
We consider an online decision problem over a discrete space in which the loss function is submodular. We give algorithms which are computationally efficient and are Hannan-consistent in both the full information and bandit settings.
منابع مشابه
Online algorithms for submodular minimization with combinatorial constraints
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.
متن کاملOnline Submodular Minimization for Combinatorial Structures
Most results for online decision problems with structured concepts, such as trees or cuts, assume linear costs. In many settings, however, nonlinear costs are more realistic. Owing to their non-separability, these lead to much harder optimization problems. Going beyond linearity, we address online approximation algorithms for structured concepts that allow the cost to be submodular, i.e., nonse...
متن کاملFixed-Parameter Tractable Optimization Under DNNF Constraints
Minimizing a cost function under a set of combinatorial constraints is a fundamental, yet challenging problem in AI. Fortunately, in various real-world applications, the set of constraints describing the problem structure is much less susceptible to change over time than the cost function capturing user’s preferences. In such situations, compiling the set of feasible solutions during an offline...
متن کاملA Submodular Function Minimization Algorithm Based on the Minimum-Norm Base∗
We consider an application of the minimum-norm-point algorithm to submodular function minimization. Although combinatorial polynomial algorithms for submodular function minimization (SFM) have recently been obtained, there still remain (open) problems of reducing the complexity of the SFM algorithms and of constructing a practically fast SFM algorithms. We show some possible approach to the pro...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 13 شماره
صفحات -
تاریخ انتشار 2012